

European Medicines Agency

Product name: INVIRASE

nn , 41427. Contraction of the second SCIENTIFIC DISCUSSION sciption of the second Detailed description of Invirase antiviral activity in vitro

7 Westferry Circus, Canary Wharf, London, E14 4HB, UK Tel. (44-20) 74 18 84 00 Fax (44-20) 74 18 86 68 E-mail: mail@emea.europa.eu http://www.emea.europa.eu

Antiviral activity in vitro:

Saquinavir demonstrates antiviral activity against both laboratory strains and clinical isolates of HIV-1 with typical EC_{50} and EC_{90} values in the range 1–10 nM and 5–50 nM, respectively, using acutely infected T cell lines or primary human lymphocytes/monocytes. In vitro antiviral activity was observed against a panel of HIV-1 group M non-clade B isolates (A, AE, C, D, F, G and H) and HIV-2 with EC_{50} values ranging from 0.3-2.5 nM. In the presence of 50% human serum or alpha-1 acid glycoprotein (1 mg/ml) the antiviral activity of saquinavir decreases by an average factor of 25-fold and 14-fold respectively.

Table 1 Activity against Laboratory and Clinical Isolate Wild-Type Viruses					
Parameters		Median EC ₅₀	Range (nM)	Median EC ₉₀	Range (nM)
		(nM)		(n M)	
Laboratory Virus Data ^a					
GB8 (n=12)		2.7	1.1-7.0	14	3.9-28 (n=11)
RF (n=2)		4.0	2-6	0.9	0.9
MN (n=1)		4.0	4	22	22
NIT (n=2)		15	1.5-28	3.1	3.1 (n=1)
HXB2 (n=1)		1.7	1.7	8.9	8.9
BaL (n=2)		11.0	1.4-20	102	4.6-200
ROD (n=1)		4.0	4	n/a ^e	n/a
IIIB (n=2)		9.0	1.7-14	3.0	0.3-6.4
Serum Shift Data					
50% Human Ser	um	250	180-680	n/a	n/a
$(n=3)^{b}$			(0% HS: 9-21)		
Clinical Isolate Data					
Subtype A (n	$=5)^{c}$	0.9	0.9-1.3	n/a	n/a
Subtype AE (n	=5) ^c	1.3	1.2-1.4	n/a	n/a
Subtype B (n	=5) ^c	1.4	1.1-1.7	n/a	n/a
Subtype C (n	=5) [°]	1.5	1.0-1.6	n/a	n/a
Subtype D (n	=5) [°]	1.4	1.0-1.9	n/a	n/a
Subtype F (n	=5) [°]	1.7	1.3-2.2	n/a	n/a
Subtype G (n	=5) ^c	1.3	1.1-2.3	n/a	n/a
Subtype H (n	=2) ^c	2.0	1.6-2.5	n/a	n/a
HIV-2 (n	=6) ^d	12	0.3-2.4	n/a	n/a

a. Laboratory strains of HIV-1 using a multi-cycle assays in acutely infected T cell lines or primary human lymphocytes/monocytes and p24, MTT, RT, or syncytia readout performed in five different laboratories (Roche Report No. W-

142331)b. Phenotypic Assay: Serum shift in EC₅₀ observed with laboratory viruses IIIB, NL4-3, and HXB2 in multicycle infection of MT4

cells in the presence to 50% human serum and 10% fetal bovine serum (Molla 1998)

c. Phenotypic Assay: Single cycle assay with protease cloned into NL4-3 expression vector (Heilek-Synder 2004)

d. Phenotypic Assay: Multi-cycle assay with clinical isolates infecting PBMCs (Heilek-Synder 2004)

e. n/a – data not available

In vitro resistance:

٠

In vitro selection of resistance from wild type HIV-1 virus:

The most commonly reported mutations observed to develop during in vitro passage of HIV-1 wild type virus in the presence of increasing concentrations of saquinavir are G48V and L90M. Recombinant virus harbouring the G48V or L90M mutations respectively, exhibited 7.9 and 3.3-fold reduced susceptibility to saquinavir. Additional protease mutations observed to develop less frequently were M36I, I54V, K57R, and L63V.

In vivo resistance:

<u>Treatment naïve patients</u>: Four studies have investigated ritonavir boosted saquinavir regimens in ART naïve patients (saquinavir/ritonavir 1600 mg/100 mg once daily n=349; 1000 mg/100 mg twice daily n=92). Baseline and on-therapy resistance analyses were available for 26 patients experiencing virological rebound, and not harbouring resistance mutations at baseline (n=1) or developing signature protease mutations associated with other PIs (n=1). Virus from two patients developed protease mutations (M36I and M46i/m respectively) not typically associated with saquinavir resistance. No saquinavir-associated protease mutations were observed to develop following virological failure.

Treatment experienced patients: Baseline and on-therapy genotype was available for 22 previously PIexperienced patients experiencing virological failure after receiving a ritonavir boosted saquinavir vedicinal product no p regimen (MaxCmin1 & 2 studies; 1000/100mg twice daily, n=171). Virus from eight (8/22; 36%) patients developed additional protease mutations following virological failure. The relative incidence of each mutation was: I84V (n=4, 18%); F53L, A71V or G73S (n=2, 9%); L10V, M46I, I54V, V82A

3