Study Design and Conduct Efficiency Evaluation via Discrete Event Simulation:

Applications in Paediatric Oncology

Jeffrey S. Barrett, PhD, FCP

CH The Children's Hospital *of* Philadelphia[®] A pediatric healthcare network

WORKSHOP ON MODELLING IN PAEDIATRIC MEDICINES 14-15 APRIL 2008

Motivation

- Paediatric oncology trials can take an inordinate amount of time to complete
- Much of the time to complete such trials is spent in the enrollment phase, waiting to assess the results of a patient event or cohort
- Patients are are constantly be sought to evaluate new agents
- The correlation between adult and paediatric dose-toxicity (MTD determination) is actually very strong

Outline

- Event-driven clinical trials
- Discrete-event simulation
- Paediatric Oncology Setting (Priors)
- Case study:
 - Simulating and comparing phase I, pediatric oncology designs
- Conclusions and Future Applications

Event-driven Clinical Trials

- Requirements based on the occurrence or frequency of pre-defined events
- Less dependent on achieving pre-specified sample size
 - Traditional sample size criteria often employed to assess the number of events required to fulfill hypothesis testing approach.

Event-driven Clinical Trials

Event-driven Clinical Trials What Drives Study Efficiency?

- Time to enroll patients
- Patient evaluability / replacement
- Time to event(s)
- Waiting / decision / administrative time

Ultimately effects "n"

Event-driven Clinical Trials Sample size consideration

Simulating Time Events Advantages

- Ability to compress time, expand time
- Ability to control sources of variation
- Avoids errors in measurement
- Ability to stop and review
- Ability to restore system state
- Facilitates replication
- Modeler can control level of detail

*Discrete-Event Simulation: Modeling, Programming, and Analysis by G. Fishman, 2001, pp. 26-27

Discrete Event Simulation Definitions

Discrete-Event Simulation Model

- Stochastic: some variables are random
- Dynamic: time progression is important
- Discrete-Event: significant changes occur at discrete time instances

Discrete Event Simulation Components

- Activities where things happen to entities during some time (which may be governed by a probability distribution)
- Queues where entities wait an undetermined time
- Entities that wait in queues or get acted on in activities
 - Entities can have attributes like kind, weight, due date, priority

Discrete Event Simulation Clinical Trial Simulation – Simple Construct

- Patient arrivals, enrollment and evaluation, arrival queueing
- Single site for incoming patients
- IAT = Inter-arrival time (stochastic or <u>constant</u>)
- IET = In-evaluability time (stochastic or <u>constant</u>)
- **EVT** = Event time (stochastic)

State:

- Now: current simulation time
- Available: number of patients waiting to be enrolled
- Enrolled: number of patients enrolled
- Complete: number of patients evaluated (passed or reached endpoint)
- Open: Boolean, true if study open to enrollment

Events:

- Pass: Patient completes evaluation without endpoint
- IE: Patient is in-evaluable
- Endpoint: Patient achieves endpoint

Discrete Event Simulation Clinical Trial Simulation – Study level events

Patient arrives at site. If the study is open (and patient is available), they will be enrolled. Otherwise, the patient is skipped (enters another study).

- IAT = Inter-arrival time
- IET = In-evaluability time
- EVT = Event time
- Now: current simulation time
- Available: number of patients waiting to be enrolled
- Enrolled: number of patients enrolled
- Complete: number of patients evaluated (passed or reached endpoint)
- Open: Boolean, true if study open to enrollment

```
Arrival Event:
Available := Available+1;
If (Open)
Open:=TRUE;
Schedule patient enrollment<sub>i</sub> @ Now + IAT;
```

Discrete Event Simulation Clinical Trial Simulation – Patient level events A patient enters the trial and gets evaluated

```
Patient Enrolled:
Available:=Available - 1;
Enrolled:=Enrolled+1;
If (Open:=TRUE) andif (Available>0)
Schedule patient enrollment<sub>i+1</sub> @ Now + IAT;
Else
```

... criteria for halt or delay;

Discrete Event Simulation Clinical Trial Simulation – Patient level events

A patient reaches endpoint.

Endpoint Event: Complete := Complete + 1; Patient event @ Now + IAT + EVT; Determine if endpoint reached → count Determine if and how study proceeds

Discrete Event Simulation						
State Variables	ION IA EV	Γ = 3 ′T ≥ 4	Patient 1 Enrolled	Patient 2 Enrolled	Patient 3 Enrolled	Patient 4 Enrolled
Available	2	0 1	0	0	1	0
Enrolled	0	2	3		4	
Complete	0			1	2	3
Study Oper	false	true		14793		No.
	0 1	2 3	4 5	6 7	89 Simulat	10 11 ion Time
Time Event Tin	ne Event	Time Event	Time Event	Time Event	Time Event	Time Event
0 Arrival S1 0 Arrival S2	I Enroll S1 I Enroll S2	2 Arrival S3	4 Enroll S3	5 S1 Finish	7 Arrival S47 Enroll S44 S2 Finish	10 S3 Finish
Now=	low=	Now=2	Now=4	Now=5	Now=7	Now=10

Discrete Event Simulation Execution

• Time

- Important to distinguish among simulation time, wallclock time, and time in the physical system
- Paced execution (e.g., immersive virtual environments) vs. unpaced execution (e.g., simulations to analyze systems)
- DES computation: sequence of event computations
 - Modify state variables
 - Schedule new events
- DES System = model + simulation executive

Discrete Event Simulation Execution

- Data structures
 - Pending event list to hold unprocessed events
 - State variables
 - Simulation time clock variable
- Program (Code)
 - Main event processing loop
 - Event procedures
 - Events processed in time stamp order

Discrete Event Simulation Reality

Paediatric Oncology: Relevance of Adult Data

Fig 3. Scatter plot of pediatric maximum-tolerated doses (MTDs) versus adult MTDs. Closed circles are studies of cytotoxic drugs, and open circles are studies of biologic drugs. The dotted lines represent a theoretical range of four dose levels from 0.7 to 1.6 times the adult MTD.

Case Study: Paediatric Phase I Oncology Trials

- Decompose study and patient-level timebased events to explore time to event and time to complete
- Evaluate simulation models with respect to historical COG data
- Compare design efficiency for 3+3 versus Rolling 6 decision logic

Study-level Events

Patient-level Events

Historical Priors 12 COG Trials

NAME	AGENT	Evaluable Subjects	DLT per Study	IE per Study	Cohorts per Study	Study Duration (days)	Administrative Time/Study Closure (days)	Time to Complete Cohort, Mean (days)
ADVL0011	TMZ/CCNU	22	2	2	4	528	86	134.2
ADVL0015	Bortezomib (PS-341; Velcade®)	15	2	3	2	281	158	95.3
ADVL0016	Gefitinib (ZD1839; Iressa®)	21	2	4	4	477	347	88.6
ADVL0018	Hu14.18-IL2 Fusion Protein	28	3	1	7	563	430	59
ADVL0211	G3139(Genesense®)/Dox/CPM	29	4	5	5	606	378	106.6
ADVL0212	Depsipeptide	24	4	7	4	539	284	135.2
ADVL0214	Erlotinib (OSI-774; Tarceva®)	22	3	3	5	344	188	77.6
ADVL0215	Decitabine/Dox/CPM	11	2	2	2	220	147	94
ADVL0311	Pemetrexed(LY231514; Alimta®)	33	3	2	8	596	200	61.1
ADVL0314	Bevacizumab (Avastin®)	14	0	2	3	233	87	132.3
ADVL0316	17-AAG	17	0	5	4	427	181	116.5
ADVL0415	Oxaliplatin/Irinotecan	13	5	1	3	289	178	52
Sector.	Median	21.5	2.5	3	4	452	184.5	77
170312	Range	11-33	0-5	1-7	2-8	220-606	86-430	33-274

Historical Priors Study Progression

Representative study progression from COG phase I study (ADVL0311)

Simulating Study Design Entities Distributional Assumptions

Parameter and Definition	Distribution and Assumptions	Simulation Scenarios
ENT, Enrollment Time: Days between subject arrival or start of cohort for first subject* of cohort	Poisson, Mean = 20	Mean Varied: 5, 20, 30, 40, 50, 100, 200 days; variance 1 – 3X
SST, Subject Start Time: Days between enrollment and start of evaluation	Normal, Mean = 2	Mean varied: 2, 5, 10 days
TDLT, Time to DLT: Days between start of evaluation and the occurrence of DLT	Uniform; Mean = 20 Poisson, Mean = 10, 15, 18, 20 days	Uniform (Mean 20) Poisson (Mean 10, 15, 18 and 20 days)
IET, Inevaluability Time: Days between start of evaluation and designation of patient as inevaluable	Normal, Mean = 21	Mean varied: 10, 15, 21 days
P(DLT), Probability of DLT: Cohorts (0 to 7)	.02 .05 .1 .3 .50 .75 .9 .95	Cohort start position varied 0, 1, or 2
P(IE), Probability of Inevaluability: Probability that a subject is inevaluable	Independent of dose cohort	0.11, 0.25, 0.05
TPASS, Time to evaluability (Pass): Days between start of evaluation and designation of patient as evaluable†	Constant, study constraint (typically 21 or 28 days)	21, 28, 35 days
TTC, Time to complete: Sum of ENT, SST and TTE [‡]	Normal	N/A

* Can also reflect time between cohort being open to enrollment and actual arrival (enrollment) if study is suspended mid-cohort. † Assumes evaluable without DLT

tTTE (time to event) refers to the time in days that it takes for a subject to be designated as evaluable due to DLT (TDLT), evaluable without DLT as a completer (TPASS) or inevaluable (IET)

Study Design Comparison Conventional 3+3 vs "Rolling 6" Design

Criteria	Three-Plus-Three	Rolling Six
No. subjects at start of trial	2	2
Criteria to take third subject	< 2 DLTs	< 2 DLTs
Criteria to de-escalate dose cohort	> 2 DLTs	> 2 DLTs
Criteria to expand from 3 to 6 subjects	1/3 DLTs	1/3 DLTs only if data from all prior subjects are available before subject 4 enrolls; otherwise continue to enroll patients 4, 5 and/or 6 until 1/N DLTs, then enroll to 6
Criteria to escalate dose cohort	0/3 DLTs, or 1/6 after expansion	0/3 DLTs, or 1/6 after expansion OR 0/5, 0/6 DLTs if no expansion
Suspension of trial	After 3 rd patient	After 6 th patient
Maximal tolerated dose	\leq 1/6 DLTs after de-escalation	\leq 1/6 DLTs after de-escalation

DES Application

Study Population

Simulation

Application

of Design

Logic

Design Comparison • Simulate "N" Trials

• Within each trial, populate "X" cohorts

• Within each cohort, simulate "i" subjects for possible study enrollment

• For each subject, simulate requisite event probabilities and time to event based on random sample from target distributions

• Determine actual event outcomes based on comparison of time to event metrics (first event to occur is event of record)

- Enrollment status assessed based on study being "open"
- Decision criteria assessed and counted
- Enrollment procedure (# of subjects available for enrollment) assessed and modified based on decision criteria
- Cohort progression based on decision criteria (event counting) for cohort and/or study being met
- "Waiting time" added at various event milestones
- Time to complete metrics (subjects, cohort, study) assessed
- Compare design proposals via event and time-based metrics
- Chart / project study progression metrics

Behind the Curtain

Post Processing Comparison of Study Progression

Post Processing Comparison of "Time to Complete"

Enrollment Time = 5 Days; Start at Cohort #2 (Increased p(DLT))

Post Processing Comparison of Number of DLTs / study

Enrollment Time = 5 Days; Start at Cohort #2 (Increased p(DLT))

Post Processing Comparison of Number of Patients / study

Enrollment Time = 5 Days; Start at Cohort #2 (Increased p(DLT))

Conclusions

- DES can be used to . . .
 - -Capture time-based study events
 - Evaluate time-based outcome metrics
 - -Compare design constructs
 - -Evaluate decision rule logic

References:

Lee DP, Skolnik JM, Adamson PC: Pediatric phase I trials in oncology: an analysis of study conduct efficiency. *J Clin Oncol* 23:8431-41, 2005

Skolnik JT, Barrett JS, Jayaraman B, Patel D, Adamson PC. Shortening the Timeline of Pediatric Phase 1 Trials: The Rolling Six Design. *J. Clin Oncol* 26(2): 190-5, 2008

Barrett JS, Jayaraman B, Patel D, Skolnik JM. A SAS-based solution to evaluate study design efficiency of phase I pediatric oncology trials via discrete event simulation. *Computer Methods and Programs in Biomedicine* (2008), doi:10.1016/j.cmpb.2007.12.008

Barrett JS, Skolnik JM, Jayaraman B, Patel D, Adamson PC. Improving Study Design and Conduct Efficiency of Event-Driven Clinical Trials via Discrete Event Simulation: Application to Pediatric Oncology (in press, *Clinical Pharmacol Ther*)

Acknowledgements

Jeffrey M Skolnik, MD

Dimple Patel, MS

Peter C. Adamson, MD

Bhuvana Jayaraman, BS

Back-up Slides

Design Checks Study Simulation

- No correlation between TTE and ENT
- No correlation between TTC and decision (event outcome)

Design Checks Study Simulation

- Verification of distributional requirements
- By cohort composition
- Event-rate confirmation

Table	of cohort	by DNAME		
cohort	DNAME			
Frequency	7,			
Percent	,			
Row Pct	,			
Col Pct	,DLT-Eval,	Inevalua, N	IO DLT -,	Total
	,uable	, ble ,	Eval ,	
fffffff	^ffffffff	`fffffffff	fffffff	
1	, 139	800 ,	6561 ,	7500
	, 0.23	1.33 ,	10.94 ,	12.50
	, 1.85	10.67 ,	87.48 ,	
	, 0.55	16.21 ,	22.12 ,	
ffffffff	^ffffffff	`fffffffff	fffffff	
2	, 334	, 803 ,	6363 ,	7500
	0.56	1.34	10.61	12.50
	4.45	10.71	84.84	
	1 32	16 27	21 45	
ffffffff	^ + + + + + + + + + + + + + + + + + + +	`ffffffffff	* f f f f f f f f	
2	684	737	6079	7500
	1 14	1 22	10 12	12 50
	, 1.14	0.02	91 05	12.50
	, 9.12	14 03	30.40	
	, 2.09	, 14.95 ,	20.49 ,	
JJJJJJJJ		JJJJJJJJ J	1111111	7500
4	, 2130	, /35 ,	4635 ,	7500
	, 3.55	1.23 ,	1.13 ,	12.50
	, 28.40	9.80,	61.80 ,	
	, 8.39	, 14.89 ,	15.62 ,	
fffffff	f fffffffff	`fffffffff	fffffff"	
5	, 3604	, 582 ,	3314 ,	7500
	, 6.01	, 0.97 ,	5.52 ,	12.50
	, 48.05	, 7.76 ,	44.19 ,	
	, 14.19	, 11.79 ,	11.17 ,	
ffffffff	ffffffff	`fffffffff	fffffff	
6	, 5315	, 463 ,	1722 ,	7500
	, 8.86	, 0.77 ,	2.87 ,	12.50
	, 70.87	, 6.17 ,	22.96 ,	
	, 20.93	, 9.38 ,	5.80 ,	
fffffff	`ffffffff	`ffffffff`f	fffffff	
7	, 6409	, 424 ,	667 ,	7500
	, 10.68	, 0.71 ,	1.11 ,	12.50
	, 85.45	5.65 ,	8.89 ,	
	, 25.23	8.59,	2.25 ,	
fffffff	*^ffffffff	`fffffffff	fffffff	
8	, 6784	392 ,	324 ,	7500
	, 11.31	0.65 ,	0.54 ,	12.50
	, 90.45	5.23 ,	4.32 ,	
	, 26.71	7.94 ,	1.09 ,	
ffffffff	^ffffffff	`fffffffff	fffffff	
Total	25399	4936	29665	60000
	42.33	8.23	49.44	100.00
Statist	ics for Ta	able of coh	ort by DN	AME
Statistic		DF	Valu	e Prot
fffffffffffff	fffffffff		fffffffff	ffffffffff
Chi-Square		14	29511 503	000 2 9
Likelihood Pat	io Chi-Son	are 14	35056 023	1 < 0001
Mantel-Haeneze	l Chi-Sour	are 1	27795 936	3 < 0001
Phi Coefficier	it our oque		0 701	3
Contingency Co	efficient		0.574	2
Cramer's V	officient.		0 495	9
CTUMET D V	Sample	Size = 600	0.495	

Design Checks Study Simulation

- The composite time scale
- TTC = ENT + SST + TTE

Design Checks Effect of Simulation Sample Size

Impact of sample size on DES study efficiency metrics with 3+3 decision rule*. Values reported as arithmetic mean (standard deviation)

Simulated	Study Duration	Subjects/study	DLT/study	IE/study	MTD Cohort
Trials (#)	(Days)	(# subjects)	(# subjects)	(# subjects)	(Cohort #)
100	528.0	16.1	3.14	1.48	2.23
	(115.8)	(3.2)	(1.04)	(1.18)	(0.76)
200	538.0	16.4	3.11	1.39	2.17
	(114.5)	(3.2)	(1.08)	(1.22)	(0.76)
500	543.7	16.4	3.08	1.58	2.23
	(131.9)	(3.7)	(1.03)	(1.36)	(0.86)
1000	537.7	16.3	3.09	1.48	2.15
	(128.5)	(3.6)	(1.05)	(1.29)	(0.81)
2000	530.6	16.3	3.10	1.46	2.14
	(124.4)	(3.6)	(1.10)	(1.28)	(0.85)

* Based model parameters used in simulation; P(DLT) = for cohorts 0 – 7, ENT = 20 days; IET = ; P(IE) = 0.11; TPASS = 21 days

Design Checks Effect of Simulation Sample Size

Discrete Event Simulation

Examples

Category	Examples
Pharmacoeconomics	 Economic evaluation of tumor necrosis factor inhibitors for rheumatoid arthritis (Kamal, 2006) Long-term costs and effects of new interventions in schizophrenia (Heeg, 2005) Improving resource allocation / reducing the health burden related to schizophrenia (Haycox, 2005) Cost analysis of a hospital-at-home service compared with conventional inpatient care (Campbell, 2001)
Clinical Risk Factors	 Impact of CV risk factor reduction on transplant outcome (McLean, 2005) Impact of HIV on increasing the probability and the expected severity of tuberculosis outbreaks (Porco, 2001) Vaccine efficacy for susceptibility and infectiousness as prognostic factors for vaccine trials in HIV (Longini, 1999)
Disease Progression	 Methodological benefit of DES in depicting disease evolution of major depression (Le Lay, 2006) Breast cancer incidence and mortality in the U.S. population from 1975 to 2000 (Fryback, 2006) Patient progression following coronary event, through treatment pathways and subsequent events (Cooper, 2002 and Babad, 2002) Modeling of the AIDS pandemic - discrete-event simulation relating contact rate heterogeneity to the rate of HIV spread (Leslie, 1990)
Hospital Operations Research	 Biology of end-stage liver disease and the health care organization of transplantation in the US (Shechter, 2005) Impact of surgical sequencing on post anesthesia care unit staffing (Marcon, 2005) Cancellation of electively scheduled cases on the day of surgery (Dexter, 2005) Performance of hospital accident and emergency department (Codrington-Virtue, 2005) Staffing for entry screening, triage, medical evaluation, and drug dispensing stations in a hypothetical antibiotic distribution center operating in disease prevalence bioterrorism response scenarios (Hupert, 2002)
Pharmacodynamics / Transduction Modeling	 CD4+ memory T cell generation to track individual lymphocytes over time (Zand, 2004) Lymphocyte-mediated destruction of malignant lymphoid cells circulating through tissue compartments of immune syngeneic C58 mice (Look, 1981)