CHMP Oncology Working Party Workshop on: Histology – Independent Indications in Oncology

Non-clinical models: Tumour Models - Proof of Concept

Edward C. Rosfjord – Pfizer Worldwide R. & D. 14 December 2017

Edward Rosfjord is an employee of Pfizer.

The research described in this presentation was conducted in Pfizer research labs by Pfizer personnel.

All procedures performed on these animals were in accordance with regulations and established guidelines and were reviewed and approved by Pfizer Institutional Animal Care and Use Committee.

Overview of Preclinical Tumour Models

<u>Genetically Engineered</u> <u>M</u>ouse Models (GEM)

Advantages:

 Mice get spontaneous tumours with defined genetics.

Useful for understanding
the biology of an oncogenic
driver in an intact animal.

Intact immune system.

Disadvantages:

- Long latency (>300 days).
- Difficult to evaluate in-life.
- Biology may be limited to the oncogenic driver or be mouse specific.

Human Tumour <u>C</u>ell <u>L</u>ine <u>X</u>enografts (CLX)

Advantages:

- Hundreds of human
 patient cell line models.
- Permits *in vitro* evaluation and *in vivo* studies.
- Short latency (<30 days).
- Common cell lines.

Disadvantages:

- Immune deficient mice.
- Clonal changes in cell lines adapted to growth *in vitro*.
- Rarely tumour studied in orthotopic space.

<u>Patient-D</u>erived Tumour <u>X</u>enografts (PDX)

Advantages:

- Complex tumour stroma architecture. May support tissular mechanisms.
- Molecular mechanisms and oncogenic drivers similar to the patient.
- Recapitulates the patient response *in vivo*.

Disadvantages:

- Immune deficient mice.
- Rarely tumour studied in orthotopic space.

SCIENCE CHANGING

Tumour Models For Immuno Oncology

Syngeneic Mouse Models

Mouse tumour cell line models implanted in immunocompetent mice

Advantages:

- Intact mouse immune system.
- Tumours from mouse cell lines or GEM allografts.
- Short latency (<30 days)

Disadvantages:

- Small number of characterized tumour models.
- Small number of molecular subtypes and oncogenic drivers.
- Immune cell biology may be mouse specific or mouse strain specific.

Humanized Mouse Models *Human tumour CLX and PDX implanted in immune deficient mice with a transplanted human immune system*

Advantages:

- Utilize the hundreds of human tumour
 CLX models and PDX models.
- Large number of molecular drivers and tumour subtypes.
- Partial human immune system.

Disadvantages:

- Tumour and immune cells may not be HLA-matched.
- No human spleen or thymus.
- Heterogeneity between different
 immune transplants *reproducibility.*

SCIENCE DE IMPACT

Analysis of 947 Human Tumour Cell Lines Cancer Cell Line Encyclopedia - CCLE

Barretina et al., (2012) Nature 483:603-607.

Detailed Analysis of Melanoma Cell Lines Over-Representation of BRAF and TP53 mutations – Decreased Representation of NF1

BRAF mutated in 30/42 (61%) cell lines ^{1, 2} NRAS mutated in 8/42 (19%) cell lines ¹ NF1 mutated in 2/42 (5%) cell lines ¹ TP53 mutated in 13/42 (31%) cell lines ¹

BRAF mutated in 52% of patients³ NRAS mutated in 28% of patients³ NF1 mutated in 14% of patients³ TP53 mutated in 15% of patients³

Cell line tumour models <u>do not</u>
 represent the full diversity of oncogenic
 drivers inherent in a cancer indication.

 Some oncogenic drivers may be over represented as a consequence of in vitro growth and selection.

¹ Vincent and Postovit, (2017) Oncotarget 8: 10498-10509
 ² Davies et al., (2002) Nature 417: 949-951.
 ³ Cancer Genome Atlas Network. (2015) Cell 161: 1681-96

0 1750 0 0.55 0 1700

SCIENCE CHANGING

Detailed comparison of CLX and PDX preclinical models

	Cell lines in vitro	Cell line xenografts	Patient-derived xenografts	Patient with refractory cancer		
Tumour Heterogeneity	No tumour heterogeneity	Limited tumour heterogeneity	←	High intratumour heterogeneity		
Oncogenes & Subtypes	Modest diversity of molecular subtypes	Modest diversity of molecular subtypes	←	Full range of molecular subtypes		
Tumour stroma	No stroma (in vitro)	Little murine stroma	Complex <u>murine</u> stroma	Intact human stroma		
Growth Rate	Rapid growth (Days)	Rapid growth (Days)	← Slower growth (Weeks)	Chronic growth (Months)		
Treatment	Untreated	Untreated	← Untreated & → prior treatment	Prior treatment in all patients		
Clinical Outcome	Not linked to clinical outcome	Not linked to clinical outcome	Some clinical outcomes available	Treatment outcomes available		
Primary or Metastatic	Mixed primary & metastatic sites	Mixed primary & metastatic sites	Mixed primary &	Mostly metastatic sites		
Orthotopic	No orthotopic studies	Rarely orthotopic implantation	Rarely orthotopic	All orthotopic		
Immune System	No immune system	Limited immune system	Limited immune system	Intact immune system		
Pfizer WORLDWIDE RESEARCH & DEVELOPMENT						

Adapted from Kopetz et al., (2012) Clin. Cancer Res. 18(19) 5160-62.

Primary Colon Xenografts Histology Distinct From Cell Line Derived Tumours

Frequency of the Use of Different Preclinical Models

WORLDWIDE RESEARCH & DEVELOPMENT Phzer

Gengenbacher N., Singhal M., and Augustin H.G. (2017) Nature Reviews Cancer 17:751-765

Types of Models Used For Eight Cancer Indications

Gengenbacher N., Singhal M., and Augustin H.G. (2017) Nature Reviews Cancer 17:751-765

PDX Recapitulate Results Seen In Clinical Trials

WORLDWIDE RESEARCH & DEVELOPMENT

Modified from Bertotti et al., (2011) Cancer Discovery 508-523.

PDX Facilitate Biomarker Development – K-Ras

🛷 WORLDWIDE RESEARCH & DEVELOPMENT

SCIENCE DELIFE-CHANGING

Modified from Bertotti et al., (2011) Cancer Discovery 508-523.

PDX Facilitate Biomarker Development – K-Ras

er Worldwide Research & Development

Modified from Bertotti et al., (2011) Cancer Discovery 508-523.

Results in PDX Similar to Clinical Trial Results

		Progressive	Stable	Partial	Complete	
	n	Disease	Disease	Response	Response	
PDX	47	59.6%	29.8%	10.6%	0.0%	Bertotti et al., 2011
Patients	111	53.2%	21.6%	10.8%	0.0%	Cunningham et al., 2004
K-Ras WT						
PDX	66	42.4%	40.9%	16.7%	0.0%	Bertotti et al., 2011
Patients	119	36.0%	34.0%	17.0%	0.0%	Amado et al., 2008

Similar clinical benefit for K-Ras WT observed in Karapetis et al., 2008

The response rate observed in Bertotti and the role of WT K-Ras was also observed in R. Krumbach et al., 2011 Eur J. Cancer (30 mg/kg q7d x3) S. Julien et al., 2012 Clin Cancer Res (40 mg/kg q4d x4)

Pfizer PDX Collection

Cancer Indication	U.S. Incidence	Not Treated	Pretreated / Refractory
Lung Cancer - NSCLC	194,190	60	51
Colorectal Cancer	134,490	50	52
Breast Cancer - TNBC	40,000	33	23
Pancreas	53,070	27	24
Ovarian	22,280	27	21
Lung Cancer - SCLC	34,000	31	25
Head & Neck	41,380	14	20
		242	216

- Nearly all pretreated PDX received combination therapies or multiple single-agent therapies.
- A panel of treated PDX aids oncology target discovery in a treated patient population. Useful for developing combination therapies or second-line therapies.

Pfizer PDX Workflow

Case Study 5T4 ADC – PDX "All Comers" Trial Histology agnostic omics to identify cancer indications

5T4 (TPBG) Expressed in Squamous NSCLC PDX

Sapra et al., (2013) Mol. Cancer Ther. 12: 38-47

Pfizer PDX Workflow

Molecular Profile of Squamous NSCLC Similar to Head & Neck

Genetic Correlation between squamous NSCLC and Head & Neck Expression profile of 10,000 genes per PDX sample

Mean R vs. Lung Squamous Tumors

5T4 (TPBG) Expression by RNASeq in 256 Different PDX In Eight Cancer Indications

Modified from Rosfjord et al., (2015) AACR Annual Meeting. Abstract 1469

5T4 Expression Proteomics Evaluation In PDX 284 NSCLC samples and 102 H&N samples

Modified from Rosfjord et al., (2015) AACR Annual Meeting. Abstract 1469

5T4 Protein IHC in Head & Neck PDX Models

HPV-

SCIENCE DE IMPACT

5T4-ADC Indication-agnostic Breadth of Activity Trial

ORR 5 / 48 = 10%

WORLDWIDE RESEARCH & DEVELOPMENT

Modified from Rosfjord et al., (2015) AACR Annual Meeting. Abstract 1469

Activity of 5T4 ADC in High Expressing PDX

2+ / 3+ expression of 5T4

Modified from Rosfjord et al., (2015) AACR Annual Meeting. Abstract 1469

5T4 expression correlates with worse prognosis MedImmune 5T4 ADC has efficacy in Head and Neck PDX

Cancer Therapy: Preclinical

Clinical Cancer Research

5T4-Targeted Therapy Ablates Cancer Stem Cells and Prevents Recurrence of Head and Neck Squamous Cell Carcinoma

Samuel A. Kerk¹, Kelsey A. Finkel¹, Alexander T. Pearson^{1,2,3}, Kristy A. Warner¹, Zhaocheng Zhang¹, Felipe Nör^{1,4}, Vivian P. Wagner^{4,5}, Pablo A. Vargas⁶, Max S. Wicha^{2,3}, Elaine M. Hurt⁷, Robert E. Hollingsworth⁷, David A. Tice⁷, and Jacques E. Nör^{1,3,8,9}

- MEDI0641 (MedImmune) is a PBD conjugated ADC to 5T4.
- Treatment of head and neck PDX that express 5T4 with MEDI0641 resulted in durable tumour regression.

🦻 WORLDWIDE RESEARCH & DEVELOPMENT

Kerk et al., (2017) Clin Cancer Research 23: 2516-27

Summary

- PDX models can provide a diversity of preclinical models with a broad range of molecular drivers.
- Molecular analysis of PDX models may identify cancer indications that could benefit from targeted treatments.
- A panel of PDX models enables preclinical proofof-concept studies that could be used histology agnostic patient selection strategies in the clinic.

Additional Slides

PDX Stroma Derived From Mouse

Utility of a PDX Collection in Oncology R&D

Rosfjord, Lucas, Li, & Gerber (2014) Biochem Pharm, 91:135-143

Use of PDX Throughout Cancer Drug Discovery

