Mechanism-Based Concepts of Size and Maturity

Nick Holford Brian Anderson

University of Auckland Auckland, New Zealand

Laer S, Elshoff JP, Meibohm B, Weil J, Mir TS, Zhang W, et al. Development of a safe and effective pediatric dosing regimen for sotalol based on population pharmacokinetics and pharmacodynamics in children with supraventricular tachycardia. J Am Coll Cardiol. 2005;46(7):1322-30.

©NHG Holford, 2008, all rights reserved.

A Mechanism Based Model

 CL_{GRP} =Group clearance CL_{STD} =Population standard clearance WT =Total Body Weight WT_{STD} =Standard weight e.g. 70 kg

Tod M, Jullien V, Pons G. Facilitation of drug evaluation in children by population methods and modelling. Clin Pharmacokinet. 2008;47(4):231-43.

Theoretical Foundation for Allometric Scaling Fractal Geometry

$$CL_{GRP} = CL_{STD} \cdot \left(\frac{WT}{WT_{STD}}\right)^{3/2}$$

West GB, Brown JH, Enquist BJ. The fourth dimension of life: fractal geometry and allometric scaling of organisms. Science. 1999;284(5420):1677-9.

Predictions Match Observations 18 Orders of Magnitude

Peters R. The ecological implications of body size. Cambridge: Cambridge University Press; 1983.

					95%		
					confi-		
				Allometric	dence		
Drug	Ν	Age	Weight (kg)	coefficient	interval	CV	Reference
Propofol	270	2–88 years	Range 12–100	0.76			(66)
Propofol	22	3–17 months	Range 8.3–12.5	0.61	0.38, 0.84	19.7%	(150)
Busulfan	24	3 months–16 years	Mean 23.8	0.74	0.59, 0.90	10.7%	(45)
			Range 7.1–62.6				
Phenytoin	322	18.4 SD 17.3 years					
		3 data sets					
		(a) 29.5 SD 15.2 years	(a) 54.4 SD 16.7	0.63	0.58, 0.67	3.7%	(63)
		(b) 6.05 SD 3.95 years	(b) 22.9 SD 11.6				
		(c) 1.33 SD 0.62 years	(c) 11.8 SD 2.07				
Oxycodone	39	6 months–7 years	Mean 16.3	0.87	0.64, 1.10	13.3%	(151)
			Range 8–43				
Pyrimethamine	89	1 week–14 years	Range 3–59	0.53	0.47, 0.59	5.8%	(34)
Sulfadoxine	89	1 week–14 years	Range 3–59	0.64	0.58, 0.70	4.8%	(34)
Methotrexate	49	6 months–17 years	Mean 30.56	0.88			(152)
			Range 7.46–80				
Valproate	22.5	0.1-14 years	Mean 31.3	0.72	0.66, 0.77	4.2%	(153)
			Range 4–74				
Sotolol	76	0.03–17 years	Mean 16 (SD 17.1)	0.58	0.42, 0.74	14.4%	(154)

Table 3 Examples that support the proposal that CL scales allometrically within humans

Size and Body Composition

- Fat Free Mass (FFM)
 - weight, height and sex
 - Janmahasatian et al. 2005

$$CL_{GRP} = CL_{STD} \cdot \left(\frac{PNWT}{WT_{STD}}\right)^{3/4} \cdot MF \cdot OF$$

- Predicted Normal Weight (PNWT)
 - FFM + Ffat*(WT FFM)
 - Duffull et al. 2004

Janmahasatian S, Duffull SB, Ash S, Ward LC, Byrne NM, Green B. Quantification of lean bodyweight. Clin Pharmacokinet. 2005;44(10):1051-65. Duffull SB, Dooley MJ, Green B, Poole SG, Kirkpatrick CM. A standard weight descriptor for dose adjustment in the obese patient. Clin Pharmacokinet. 2004;43(15):1167-78.

How to Describe Clearance Maturation?

• Theory

Should be close to zero at conception

- CL will appear during development in utero
- Should reach adult values around age 20
- Observations
 - Slow changes after premature birth
 - Rapid changes around time of normal gestation
 - Slow change in older children

Which Age?

- Post-natal age (PNA)
 - Does not account for in utero maturation
- Post-menstrual age (PMA)
 - On average 2 weeks longer than biological age
- Post-conception age (PCA)
 - The biological age but not widely recorded

Maturation Models

0

26

52

PMA Weeks

78

104

Linear increase (Linvall & Reith • 2005) Θ OK for small age ranges e.g. _ premature neonates 80 Exponential increase (Anderson 2000) % Adult/70k Premature and term OK but not 60 adult values Asymptotic Exponential (Hayton 2002) 40 Term and adult OK but too fast for premature neonates 20 Sigmoid Emax (Tod et al. 2001) • Matches theory and observation across all ages 0

$$MF = \frac{PMA^{HillCL}}{PMA^{HillCL} + TM_{50}^{HillCL}}$$

Glomerular Filtration Rate Observed Data

Rhodin MM, Anderson BJ, Peters AM, Coulthard MG, Wilkins B, Cole M, et al. Human renal function maturation – a quantitative description using weight and post-conception age. Submitted. 2008.

©NHG Holford, 2008, all rights reserved.

GFR Size and Maturation

Postconception age (PMA-2) weeks

Paracetamol Clearance

van der Marel CD, Anderson BJ, van Lingen RA, Holford NH, Pluim MA, Jansman FG, et al. Paracetamol and metabolite pharmacokinetics in infants. Eur J Clin Pharmacol. 2003;59(3):243-51.

Morphine Clearance

PCA=PMA-2 weeks

Anand KJS, Anderson BJ, Holford NHG, Hall RW, Young T, Barton BA. Morphine Pharmacokinetics and Pharmacodynamics in Preterm Neonates: Secondary Results from the NEOPAIN Multicenter Trial 2008.

Bouwmeester NJ, Anderson BJ, Tibboel D, Holford NH. Developmental pharmacokinetics of morphine and its metabolites in neonates, infants and young children. Br J Anaesth. 2004;92(2):208-17.

Renal and Metabolic Maturation

Practical Implementation

Table 5Pediatric maintenance doses of drugs expressed as apercentage of adult dose using an allometric 3/4 power model. Theneonatal estimate based on size has been reduced further by 50% toaccount for age-related maturational changes of clearance

		Percentage of	Fraction of
Approximate age	Weight (kg)	adult dose	adult dose
Birth	3.2	5	1/20
2 months	4.5	13	1/8
4 months	6.5	17	
12 months	10	23	1/4
18 months	11	25	
5 years	18	36	
7 years	23	43.5	
10 years	30	53	1/2
11 years	36	61	
12 years	40	66	
14 years	45	72	3/4
16 years	54	82	
Adult	70	100	1

Time for an Aphorism Change

Adults are BIG Children

Children are OLD Babies

Backup Slides

Why Estimated Allometric Coefficients are Usually Unreliable

Table 4Imprecision of estimates of allometric coefficient forclearance (true value 0.75)

Weight distribution	5%CI	95%CI	
Log normal median 70 kg, 20%CV	0.48	1.01	
Log normal median 70 kg, 50%CV	0.64	0.86	
Uniform 0–140 kg	0.69	0.81	

Estimation was performed using NONMEM V 1.1 with the FOCE interaction method. Empirical confidence interval (CI) and CV (standard deviation/average) from parametric bootstrap distribution of 1000 replications. One hundred subjects were drawn from each weight distribution for each replication. SE=12.1% SE=8.8% SE=4.5%

Volume of distribution

- Body composition changes with age
- Foetus spends 9 months in a swimming pool
- When babies are born they cry and pee to get rid of all the excess water!
- Volume of distribution falls after birth

Glomerular Filtration Rate

Derived from Acyclovir in Neonates

Tod M, Lokiec F, Bidault R, De Bony F, PetitJean O, Aujard Y. Pharmacokinetics of Oral Acyclovir in Neonates and in Infants: a Population Analysis. Antimicrob Agents Chemother. 2001;45(1):150–7.

History of Size Scaling

Year	Event	Reference	
1637	Galileo discussed relationship of skeletal size to body mass	(8, 143)	
1839	Sarrus & Rameaux propose "surface law" to French Royal Academy		
1932–1934	Brody & Kleiber establish that log (BMR) plotted against the log(body weight) produces a straight line with a slope of 3/4	(18, 19)	
1931-1937	Brody & Carrel define physiological time	(144, 145)	
1949	Adolph relates physiological properties in various animals to body weight	(35)	
1961	Kleiber considers explanations that are based on changes in body composition with size	(24)	
1970	Application of physiological time onto plasma time-concentration profiles from different species	(39)	
1973	McMahon offers a structural explanation	(27)	
1977	Introduction of allometric equations in pharmacokinetic parameter scaling	(146)	
1983	Peters considers the ecological implications of body size	(7)	
1984–1995	Comprehensive reviews about the role of allometry in pharmacokinetics	(8, 42, 147–149)	
1997+	Fractal geometry to mathematically explain this allometric 3/4 power model.	(21, 23, 26, 29-31)	