Changing diagnostic criteria for AD - Impact on Clinical trials

London, November 2014

Bruno Dubois

Head of the Dementia Research Center (IMMA)

Director of INSERM Research Unit (ICM)

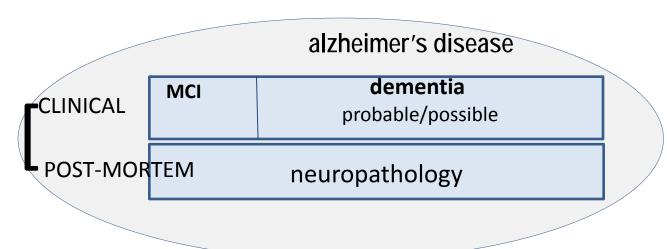
Salpêtrière Hospital – University Paris 6

DISCLOSURE

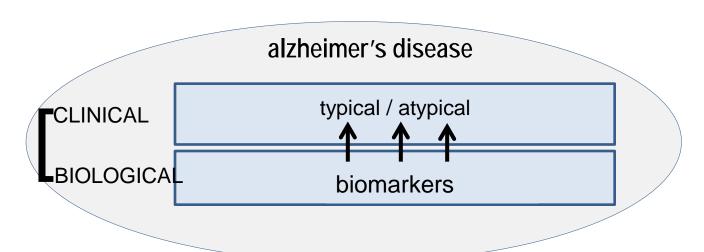
- Consultancy:
 Affiris, Eli Lilly, Roche
- 2) Funding for my Institution:Pfizer, Roche

IWG-1 criteria (2007-2010)

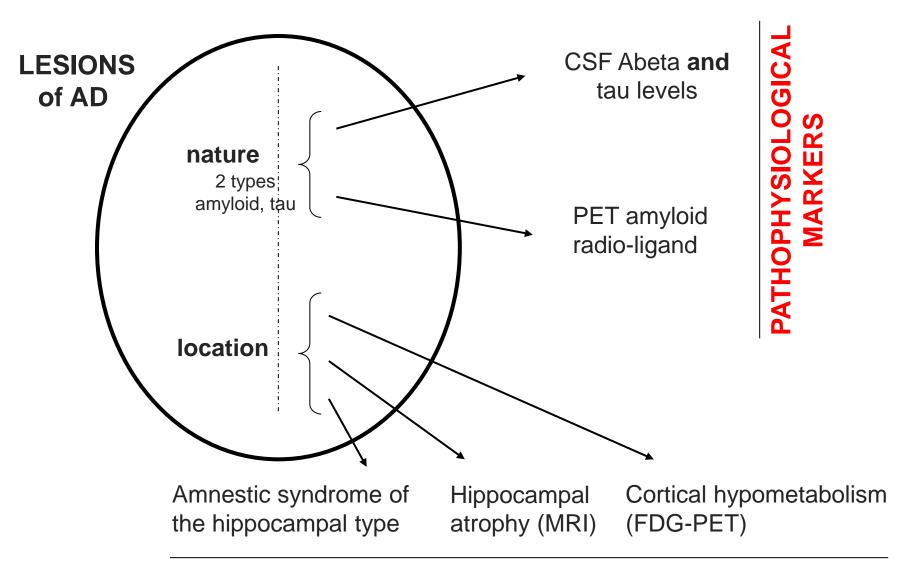
First introduction of different AD clinical stages ☐ prodromal stage ☐ dementia stage
First introduction of different AD preclinical states ☐ asymptomatic at risk (biomarker positive) ☐ presymptomatic (mutation carriers)
First introduction of different forms of AD ☐ typical ☐ atypical


One disease: one set of criteria

AD: a clinico-biological entity


The conceptual shift

1984
NINCDS-ADRDA


clinical pathological entity

The different biomarkers of AD

TOPOGRAPHICAL MARKERS

The 2 types of biomarkers (LN, 2014)

Diagnostic markers

- Pathophysiological markers
- Reflect in-vivo pathology (amyloid and tau changes)
- Are present at all stages of the disease
- Observable even in the asymptomatic state
- Might not be correlated with clinical severity
- Indicated for inclusion in protocols of clinical trials

Progression markers

- Topographical or downstream markers
- Poor disease specificity
- Indicate clinical severity (staging marker)
- Might not be present in early stages
- Quantify time to disease milestones
- Indicated for disease progression

The « IWG-2 criteria »

A simplified algorithm is proposed:

In any condition and at any stage of the disease, the diagnosis of AD relies on the presence of a pathophysiological marker.

Typical

Amnestic syndrome of the Hipp. type

Atypical

- Posterior cortical atrophy
- Logopenic variant
- Frontal variant

Asymptomatic at risk

No AD phenotype (typical or atypical)

Presymptomatic (AD mutation)

No AD phenotype (typical or atypical)

• CSF (low β1–42 and high T or P-tau)

OR

• Amyloid PET (high retention of tracer)

IWG-2 criteria for typical AD, at any stage For instance, for prodromal AD

CLINICO - BIOLOGICAL ENTITY

- ☐ Amnestic syndrome of the hippocampal type
- ☐ Isolated or associated with other cognitive or behavioral changes

• CSF (low β1–42 and high T or P-tau)

OR

• Amyloid PET (+)

(3) NIA/AD diagnostic Criteria

The NIA/AA criteria acknowledge that:

- brain changes can occur long before dementia symptoms
- disease biomarkers might be useful for the diagnosis

3 recognized stages with 3 different diagnostic algorithms

- AD dementia stage (10 categories)
- MCI stage (4 categories)
- preclinical stage (3 categories)

2 types of MCI criteria:

- for clinical setting
- for research purposes that are based on the use of biomarkers:

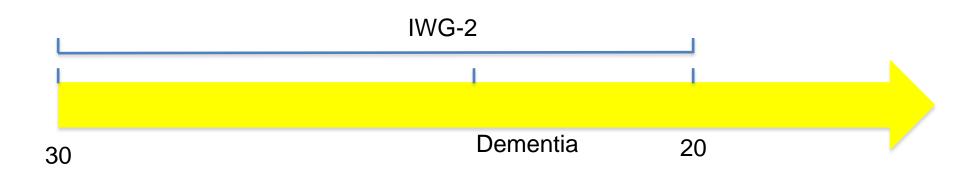
Cognition	Likelihood of AD	Biomarker Evidence
MCI	High likelihood	(+) amyloid-β biomarker AND (+) neuronal injury biomarker*
MCI	Intermediate likelihood	(+) amyloid-β biomarker OR (+) neuronal injury biomarker*
MCI	Uninformative situation	Biomarkers fall in ambiguous ranges, conflict, not obtained
MCI	Unlikely due to AD	Demonstrated absence of AD-type molecular marker and possible presence of marker suggestive of non-AD disorder

Characteristics	IWG-2	NIA/AA
Pathophysiological markers only	YES	
At least, amyloid marker necessary	YES	
Specific clinical phenotype required	YES	
Integration within a continuum	YES	
Different levels of likelyhood	NO	
Only clinical	NO	

Characteristics	IWG-2	NIA/AA
Pathophysiological markers only	YES	NO
At least, amyloid marker necessary	YES	
Specific clinical phenotype required	YES	
Integration within a continuum	YES	
Different levels of likelyhood	NO	
Only clinical	NO	

Characteristics	IWG-2	NIA/AA
Pathophysiological markers only	YES	NO
At least, amyloid marker necessary	YES	NO
Specific clinical phenotype required	YES	
Integration within a continuum	YES	
Different levels of likelyhood	NO	
Only clinical	NO	

Characteristics	IWG-2	NIA/AA
Pathophysiological markers only	YES	NO
At least, amyloid marker necessary	YES	NO
Specific clinical phenotype required	YES	NO
Integration within a continuum	YES	
Different levels of likelyhood	NO	
Only clinical	NO	


Characteristics	IWG-2	NIA/AA
Pathophysiological markers only	YES	NO
At least, amyloid marker necessary	YES	NO
Specific clinical phenotype required	YES	NO
Integration within a continuum	YES	NO
Different levels of likelyhood	NO	
Only clinical	NO	

Characteristics	IWG-2	NIA/AA
Pathophysiological markers only	YES	NO
At least, amyloid marker necessary	YES	NO
Specific clinical phenotype required	YES	NO
Integration within a continuum	YES	NO
Different levels of likelyhood	NO	YES
Only clinical	NO	

Characteristics	IWG-2	NIA/AA
Pathophysiological markers only	YES	NO
At least, amyloid marker necessary	YES	NO
Specific clinical phenotype required	YES	NO
Integration within a continuum	YES	NO
Different levels of likelyhood	NO	YES
Only clinical	NO	YES

« Early AD »: the right target

- This includes 'Prodromal + Mild AD dementia'
- IWG-2 criteria with MMS ≥ 20

Advantages:

- Focus on early stage of AD
- One disease = One set of criteria
- Possibility for a secondary stratification

The preclinical states of AD

Who are they?

Presymptomatic AD

= with autosomal dominant monogenic AD mutation: they will develop AD

Asymptomatic at risk for AD (AR-AD)

= with a positive pathological marker (brain or CSF): they will or will not develop AD

IWG-2 criteria for asymptomatic at risk

Absence of specific clinical phenotype of AD (both are required):

- □ Absence of amnestic syndrome of the hippocampal type
- ☐ Absence of any clinical phenotype of atypical AD

- CSF (low β1–42 and high T or P-tau)
 OR
- Amyloid PET (+)

Should we treat subjects at preclinical states?

Drugs

- Yes, if drugs decrease AD brain lesions
- Yes, if drugs have no side effects in the long term

Design

 Yes, if we know how to assess the clinical efficacy at preclinical stages

Subjects

 Yes, if we can ascertain that they all will further develop Alzheimer's disease

Unresolved Issues about AR-AD

- 1) Will they **all** convert to AD? Ethical issues:
- What should we disclose about their status and their risk?
- Can we treat someone against a disease that he/she will never develop?
- 2) When will they convert to AD? Therapeutic issues:
- Duration of the study?
- Factors to be controlled: age? APOE status? amyloid burden? cognitive reserve? education? preventive genetic/epigenetic factors?...

A need to better know the natural history of AD

A need to identify markers of a further conversion

IWG-2 criteria for presymptomatic AD

Absence of <u>specific clinical phenotype of AD</u>

(both are required):

- ☐ Absence of amnestic syndrome of the hippocampal type
- Absence of any clinical phenotype of atypical AD

Proven AD autosomal dominant mutation for AD

Added-value of the IWG-2 criteria

- They focus on the entire continuum of AD including the preclinical states;
- They utilize a single diagnostic framework for the entire range of clinical severity
- They integrate **pathophysiological** biomarkers into all phases of the diagnostic approach to improve on the diagnostic specificity
- AD diagnosis is now based at least on the presence of brain amyloidosis
- They integrate causative mutations into diagnosis
- They are simple to apply
- They can be used for inclusion of patients with « early AD », an important target for clinical trials

Limitations

- The willingness of individuals to undergo lumbar puncture
- The criteria mainly apply for research, memory clinics and expert centers
- There are ethical and practical concerns about disclosure of biomarker status in asymptomatic or very early symptomatic individuals
- Norms are needed for biomarkers
- Norms are needed for episodic memory tests that can be applied for a wide range of age, education, culture
- This requires a coordinated international effort

We gratefully acknowledge the IWG participants

 H Feldman, C Jacova, H Hampel, JL Molinuevo, K Blennow, ST DeKosky, S Gauthier, D Selkoe, R Bateman, S Cappa, S Crutch, S Engelborghs, GB Frisoni, NC Fox, D Galasko, M-O Habert, GA Jicha, A Nordberg, F Pasquier, G Rabinovici, P Robert, C Rowe, S Salloway, M Sarazin, S Epelbaum, L de Souza, B Vellas, PJ Visser, L Schneider, Y Stern, P Scheltens, JL Cummings