

- 1 26 July 2018
- 2 EMEA/CHMP/BMWP/31329/2005 Rev 1
- 3 Committee for Medicinal Product for Human Use (CHMP)
- 4 Guideline on similar biological medicinal products
- 5 containing recombinant granulocyte-colony stimulating
- 6 factor (rG-CSF)
- 7 Draft

8

Draft agreed by BMWP	July 2018
Adopted by CHMP for release for consultation	26 July 2018
Start of public consultation	15 August 2018
End of consultation (deadline for comments)	15 February 2019

9 10

11

The proposed guideline will replace Annex to Guideline on similar medicinal products containing biotechnology-derived proteins as active substance: Non-Clinical and Clinical Issues - Guidance on

12 Similar Medicinal Products containing Recombinant Granulocyte-Colony Stimulating Factor,

EMEA/CHMP/BMWP/31329/2005

13 14

Comments should be provided using this $\underline{\text{template}}$. The completed comments form should be sent to $\underline{\text{BMWP.Secretariat@ema.europa.eu}}$

15

Regionas	stimulating factor, rG-CSF, pegylated rG-CSF, al product, biosimilarity, comparability, non- udies
----------	---

16

17

18

19	Guideline on similar biological medicinal products
20	containing recombinant granulocyte-colony stimulating

21 factor (rG-CSF)

22

37 38

Table of contents

23	Executive summary	3
24	1. Introduction	
24	1. Titti Oddctioi1	. · ·
25	2. Scope	4
26	3. Legal basis and relevant guidelines	4
27	4. Non-Clinical Studies	5
28	4.1 In vitro studies	5
29	4.2 In vivo studies	5
30	5. Clinical Studies	5
31	5.1. Pharmacokinetic studies	5
32	5.2. Pharmacodynamic studies	6
33	5.3. Clinical efficacy studies	7
34	5.4. Clinical Safety	7
35	6. Pharmacovigilance Plan	7
36	7. Extrapolation of indication	7

Executive summary

- 40 This guideline lays down the EU regulatory position on the non-clinical and clinical development of
- 41 recombinant granulocyte colony stimulation factor (rG-CSF) containing medicinal products claimed to
- be biosimilar to an originator product approved in the Economic European Area (EEA). It is a revision
- 43 of the Guideline on Similar biological medicinal products containing recombinant granulocyte-colony
- 44 stimulating factor.

39

53

- 45 The non-clinical section provides guidance on *in vitro* pharmacodynamic studies and, if needed, *in vivo*
- 46 toxicological assessment. The clinical section provides guidance on pharmacokinetic and
- 47 pharmacodynamic studies and, if needed, a clinical immunogenicity study, as well as the risk
- 48 management plan. Whereas the previous version of this guideline requested a comparative clinical trial
- in most cases, the revised guideline focusses on demonstration of biosimilarity based on a strong and
- 50 convincing physicochemical and functional data package and comparable pharmacokinetic and
- 51 pharmacodynamic profiles. In addition, the non-clinical section has been amended to follow a risk-
- based approach. Specific considerations on pegylated rG-CSF have been included, where relevant.

1. Introduction

- 54 The marketing authorisation application dossier of a new recombinant Granulocyte Colony-stimulating
- 55 Factor (rG-CSF)-containing medicinal product claimed to be similar to a reference medicinal product
- 56 already authorised in the EU shall provide the demonstration of comparability of the product applied for
- to this reference medicinal product.
- 58 Human G-CSF is a single polypeptide chain protein of 174 amino acids with O-glycosylation at one
- 59 threonine residue. Recombinant G-CSFs produced in E. coli (filgrastim) or in CHO-cells (lenograstim)
- are in clinical use. Compared to the human and to the mammalian cell culture derived G-CSF, the E.
- 61 coli protein exhibits an additional amino-terminal methionine and no glycosylation. The rG-CSF protein
- 62 contains one free cysteinyl residue and two disulphide bonds.
- 63 Pegylated and non-pegylated versions of filgrastim-containing medicinal products are in clinical use.
- 64 Whereas pegfilgrastim can be administered subcutaneously only, non-pegylated filgrastim can also be
- 65 given intravenously. Compared to non-pegylated filgrastim, pegfilgrastim exhibits delayed and
- 66 prolonged absorption and elimination and consequently delayed onset and prolonged duration of
- 67 action.
- Recombinant G-CSF is mainly eliminated by neutrophil-mediated clearance and, after saturation of this
- 69 pathway, by a low-rate, neutrophil-independent and linear pathway mediated by renal clearance.
- 70 Therefore, elimination of rG-CSF is more rapid with increasing neutrophil counts. Pegylation of rG-CSF
- 71 renders renal clearance insignificant, making the neutrophil-mediated clearance the predominant
- 72 elimination pathway.
- 73 The rG-CSF protein can be well characterised by state-of-the-art physico-chemical and biological
- methods as can the polyethylene glycol (PEG) part of the molecule, where applicable. The development
- of a biosimilar pegylated rG-CSF not only requires demonstration of similarity of rG-CSF but also of the
- 76 PEG part of the molecule including size, dispersity and binding site.
- 77 G-CSF stimulates the bone marrow to produce granulocytes and stem cells and their release into the
- blood stream. It also stimulates the survival, proliferation, differentiation, and function of neutrophil
- 79 precursors and mature neutrophils. The clinical use of rG-CSF containing medicinal products is to
- 80 reduce the extent and duration of neutropenia (and consequently the risk of invasive bacterial and

- 81 mycotic infections) in patients with congenital, idiopathic, acquired or iatrogenic forms of severe
- 82 neutropenia and the mobilisation of peripheral blood progenitor cells (PBPCs).
- 83 The effects of G-CSF on the target cells are mediated through its transmembrane receptor that forms
- 84 homo-oligomeric complexes upon ligand binding. Several isoforms of the G-CSF receptor arising from
- 85 alternative RNA splicing leading to differences in the intracytoplasmic seguences have been isolated.
- 86 One soluble isoform is known. However, the extracellular, ligand-binding domains of the known
- 87 isoforms are identical. Consequently, the effects of rG-CSF are mediated via a single affinity class of
- 88 receptors.

95

101

- 89 Antibodies against rG-CSF appear to develop infrequently and have not been associated with relevant
- 90 consequences for efficacy or safety. Antibodies against PEG, on the other hand, seem to be frequent,
- 91 even in treatment-naïve patients, which may be explained by exposure to widely used PEG as well as
- 92 PEG derivatives, e.g. in pharmaceutical and cosmetic products. Anti-PEG antibodies may potentially
- 93 alter the pharmacokinetics and biodistribution of PEG-modified medicines. Safety issues related to anti-
- 94 PEG antibodies have not been described.

2. Scope

- 96 The guideline on similar biological medicinal products containing biotechnology-derived proteins as
- 97 active substance: non-clinical and clinical issues (EMEA/CHMP/42832/2005 Rev. 1) addresses general
- 98 aspects of establishing biosimilarity of such biological products in terms of safety and efficacy.
- 99 This product class-specific guideline presents the current view of the CHMP on the application of the
- main guideline for demonstration of biosimilarity of two rG-CSF-containing medicinal products.

3. Legal basis and relevant guidelines

- This Guideline should be read in conjunction with the following requirements laid down in the EU
- 103 Pharmaceutical legislation and relevant CHMP guidelines.
- Directive 2001/83/EC, as amended, in particular in Directive 2001/83/EC Art 10(4) and Part II of
 the Annex I of Directive 2001/83/EC, as amended
- Guideline on similar biological medicinal products (CHMP/437/04 Rev. 1)
- Guideline on similar biological medicinal products containing biotechnology-derived proteins as active substance: non-clinical and clinical issues (EMEA/CHMP/BMWP/42832/2005 Rev. 1)
- Guideline on similar biological medicinal products containing biotechnology-derived proteins as
 active substance: Quality issues (EMA/CHMP/BWP/247713/2012)
- ICH guideline S 6 (R1) Preclinical safety evaluation of biotechnology-derived pharmaceuticals
 (EMA/CHMP/ICH/731268/1998)
- Guideline on the clinical investigation of the pharmacokinetics of therapeutic proteins
 (EMEA/CHMP/ 89249/2004)
- Guideline on the investigation of bioequivalence (CPMP/EWP/QWP/1401/98 Rev. 1)
- Guideline on Immunogenicity Assessment of Therapeutic Proteins (EMEA/CHMP/BMWP/14327/2006
 Rev. 1)
- Guideline on good pharmacovigilance practices (EMA/500020/2012)

Guideline on good pharmacovigilance practices, Module V – Risk management systems
 (EMA/838713/2011)

4. Non-Clinical Studies

- As regards non-clinical development, a stepwise approach should be applied to evaluate the similarity
- of the biosimilar and reference medicinal product.
- Non-clinical studies should be performed before initiating clinical trials. *In vitro* studies should be
- 125 conducted first and a decision then made as to the extent of what, if any, in vivo work will be required.
- 126 General guidance on the stepwise approach is provided in the "Guideline on similar biological medicinal
- 127 products containing biotechnology-derived proteins as active substance: non-clinical and clinical
- 128 issues". The approach taken will need to be fully justified in the non-clinical overview.

4.1 In vitro studies

121

129

142

152

- 130 In order to compare differences in biological activity between the similar and the reference medicinal
- 131 product, data from comparative bioassays should be provided, including receptor-binding studies and
- 132 functional assays (e.g. cell proliferation assay). Wherever possible, analytical methods should be
- standardised and validated according to relevant guidelines.

134 4.2 In vivo studies

- Generally, in vivo studies in animals are not recommended.
- 136 Measurement of pharmacokinetic and pharmacodynamic parameters is expected to be included in
- 137 clinical studies and similar studies in animals are usually not expected to contribute additional relevant
- information to the biosimilarity exercise. Such studies as well as toxicological studies should only be
- 139 considered in specific cases, as explained in the "Guideline on similar biological medicinal products
- 140 containing biotechnology-derived proteins as active substance: non-clinical and clinical issues."

141 5. Clinical Studies

5.1. Pharmacokinetic studies

- 143 It is recommended to compare the pharmacokinetic (PK) properties of the test and the reference
- medicinal product in healthy volunteers using subcutaneous administration. Additional clinical
- pharmacology studies for intravenous use, if applicable, are not required.
- 146 In principle, cross-over or parallel-group PK studies are acceptable.
- Typically, AUC_{0-inf} and AUC_{0-tau} would be primary PK endpoints after single and multiple dose
- administrations, respectively. Endogenous G-CSF plasma levels, although low, could lead to erroneous
- exclusion of data. Therefore, in this context use of AUC_{0-t} is preferable since the duration of plasma
- sampling is based on the PD endpoint, which is considerably longer than needed for determination of
- 151 AUC for PK.

Specifics for non-pegylated rG-CSF

- 153 A multiple-dose study consisting of 5 consecutive daily administrations of test and reference,
- respectively, is recommended. Due to the primary receptor-mediated clearance, which increases with

- 155 repeated administration, multiple-dose studies are considered more sensitive than single-dose studies
- to detect potential differences in PK. In addition, PD response especially with regard to CD34+ cell
- 157 count is more robust with repeated administration. Daily doses of 5 mcg/kg/day are recommended to
- detect potential differences in both PK and PD. The wash-out phase between periods in cross-over
- studies should be sufficient (greater than 4 weeks) to avoid carry-over of pharmacological effects.
- 160 AUC_(0-t) and C_{max} after last administration should be defined as primary PK endpoints. Secondary
- endpoints should include AUC₍₀₋₂₄₎, C_{max} and T _{max} after first administration as well as AUC_{0-inf} and
- 162 terminal t½ after last administration.
- 163 A comparability range of 80-125% is considered acceptable without further justification.

Specifics for pegylated rG-CSF

- 165 In principle, cross-over or parallel-group single-dose PK studies are acceptable. The intra-subject
- variability of pegylated rG-CSF PK is considerably lower than the inter-subject variability. Hence, cross-
- over studies decrease the notably high PK variability of pegylated rG-CSF but require a long wash-out
- 168 phase (at least 6 weeks) to avoid relevant carry-over of pharmacological effects. Studies with a parallel
- 169 group design on the other hand will require a higher number of study subjects to account for inter-
- 170 subject variability.

164

- 171 Measures to decrease PK variability are advisable. Female gender has been associated with –
- apparently menstrual cycle dependent increased PK variability which should be taken into account
- when planning PK studies. Alternatively, it is acceptable to perform studies in male subjects only.
- 174 Injection site and injection technique should be standardised to decrease variability. Other factors that
- may affect drug exposure are bodyweight and potentially anti-PEG antibodies. If pre-planned, a
- 176 subgroup analysis of subjects without pre-existing or treatment-emergent anti-PEG antibodies may be
- 177 acceptable for proof of similar PK profiles. However, a large difference in antibody development may
- 178 question biosimilarity.
- 179 A single dose in the range of 2 to 6 mg is considered suitable to detect potentially relevant differences
- in both PK and PD. Care should be taken to administer similar protein amount of test and reference
- products since the dose-exposure relationship is greatly overproportional and correction for protein
- 182 content using linear models is not appropriate.
- 183 AUC_(0-t) and C_{max} should be defined as primary PK endpoints. Secondary endpoints should include
- 184 AUC_{0-inf} and terminal $t\frac{1}{2}$.
- Due to the high PK variability and a rather flat exposure-response relationship, a comparability range
- of up to 66-150% is considered acceptable but the point estimate will also be taken into account when
- 187 assessing PK similarity.

5.2. Pharmacodynamic studies

- 189 The pharmacodynamic (PD) effects of the test and the reference medicinal product should be assessed
- as part of the PK study(ies). Pharmacodynamic endpoints are the same for pegylated and non-
- 191 pegylated products.

188

- AUEC_{0-t} and E_{max} of the absolute neutrophil count (ANC) should be the primary and AUEC_{0-t} and E_{max} of
- the CD34+ cell count the secondary PD endpoints. The PD parameters should be determined after the
- 194 last administration.

- 195 For all PD parameters, 95% confidence intervals should be calculated. The comparability limits for the
- main PD parameters should be defined and justified prior to conducting the study; a comparability
- range of 90-111% would be acceptable without further justification.

198 5.3. Clinical efficacy studies

- 199 Pivotal evidence for similar efficacy will be derived from the similarity demonstrated in
- 200 physicochemical, functional, pharmacokinetic and pharmacodynamic comparisons. A dedicated
- 201 comparative efficacy trial is therefore not considered necessary.

5.4. Clinical Safety

202

214

220

- 203 Provided the biosimilar and the reference product exhibit comparable physicochemical and functional
- 204 characteristics as well as comparable PK and PD profiles, those adverse events that are related to
- 205 exaggerated pharmacological effects (e.g. leukocytosis, splenomegaly, bone pain) can be expected to
- occur at similar frequencies. Therefore, a dedicated safety study is not required.
- 207 Immunogenicity should be assessed as part of the pharmacology study(ies). Cross-over designs may
- 208 hamper the interpretability of the results. If analytical comparison, impurity profiles and/or antibody
- 209 results from the available study(ies) cast doubt on an acceptable immunogenic potential of the
- 210 biosimilar candidate, an additional parallel-group study with repeated administration and focus on
- immunogenicity evaluation should be performed. The general principles, including guidance on how to
- 212 deal with pegylated proteins, is described in the Guideline on Immunogenicity assessment of
- therapeutic Proteins (EMEA/CHMP/BMWP/14327/2006 Rev 1) and should be followed.

6. Pharmacovigilance Plan

- 215 Within the authorisation procedure, the applicant should present a risk management plan in
- accordance with current EU legislation and pharmacovigilance guidelines. The risk management plan of
- 217 the biosimilar should take into account identified and potential risks associated with the use of the
- 218 reference product. In addition, detailed discussion should be provided on how these safety concerns
- will be addressed in post-marketing follow-up.

7. Extrapolation of indication

- 221 Considering that G-CSF has only a single mode of action, i.e. through binding to the G-CSF receptor,
- demonstration of biosimilarity based on physicochemical and functional characterisation,
- 223 pharmacokinetic and pharmacodynamic profiles after subcutaneous administration and, where needed,
- 224 additional immunogenicity data will allow extrapolation to intravenous use and to other indications and
- patient populations licensed for the reference product, if applicable.